Chapter 5:
Algorithms

Computer Science: An Overview
Tenth Edition

by
J. Glenn Brookshear

vy
[T

Addison
Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

What is an algorithm?

- Let’s play a game!

Stepl: Please stand up

Step2: Each student initiate with number X
=1

Step 3: Add the X of your closest neighbor
toyour X X, ., = X gt X

Step 4: Please let your neighbor sit down

The remaining standing students repeat
from Step 3 to Step 4

2-5

Algorithm and program

« Algorithm

— An ordered set of unambiguous, executable steps
that defines a terminating process to solve the
problem

* Program

— A set of instructions, which describe how computers
process data and solve the problem

Two elements of algorithm

» Algorithm: operation + control
structure

« Operation:
— Arithmetic: +, -, *, / , etc.
— Relation: >=, <=, etc.

— Logic: and, or, not, etc.

— Data transfer: load, store

Control structure

- Seguential
- Conditional

- loop
|
Yes /L No

Meet the

Y Y \ 4

B A B

l | 1 '

Sequential Conditional

Loop structure

Condition

Test false
—» condition

Condition
true

— Activity

While loop structure

Condition
false

l

Activity

l

Test
condition

i

Condition
true

Repeat loop structure

5-9

Algorithm Representation

- Requires well-defined primitives

- A collection of primitives constitutes a
programming language.

5-10

Algorithm representation

- Natural language
 Traditional flow chart
* N-S flow chart

* Pseudo code

11

Figure 5.2 Folding a bird from a
sguare pliece of paper

Natural language: Origami primitives

Syntax

Semantics

—5—

Shade one side
of paper

Turn paper over
asin ® O Q

Distinguishes between different sides of paper

Represents a valley fold

so that ® represents Q

Represents a mountain fold

so that represents ®

Fold over

[
so that ® produces @
Push in \
so that 4 produces @

5-13

Traditional flow chart

Feaiy Bl Ihfie
#1HE (::::) FRYENT T T
WARHE | T B
SIS T PAE T ERE
e <> R PRI R ER R
g I FREERRTAE
S O wTE B L

14

Example: estimation of 1r

22 42 62 82

x x x Moaw
1x3 3x5 35x7 7x9
D

|
Ry R Vs J R i g TR

357 9 11
b 1 1

B
i

I
t

b
o]
L

~.
P
pud
o
(= 3 = T S - Y

I

—
|

—
—

B 3x3 Fx5 Fx7

PR

15

Computation of Pi

16

N-S flow chart

* Proposed by I.Nassi and B.Shneideman

 For structured programming

17

=
A T jf/F
B
4 [B
{a) (b)
=i AT A
A H Sl 4 5 ar
o (d)

3 control structures for
N-S flow chart

pi+0 +
o1
1+
f+1+

t| =105

prpi+ i
g—-] *g4
*+1=1+

t—s* 1/ 2%1- 10+

fiD prtae

18

Pseudocode Primitives

+ Assignment

name < expression

« Conditional selection

If condition then action

5-19

Pseudocode Primitives (continued)

- Repeated execution

while condition do activity

* Procedure

procedure name (generic names)

5-20

Figure 5.4 The procedure Greetings
In pseudocode

procedure Greetings

Count « 3;
while (Count > 0) do
(print the message "Hello” and

Count « Count —1)

Real code?

2-22

What algorithms can do?

1
_

£
=
<
o
=

Repair using shrink-wrapping

Jungiao Zhao
Hugo Ledoux
Jantien Stoter

TU Delft 2013

Algorithm discovery

* Art

= analysis + knowledge + experiment +
iInspiration (potential)

2-26

Polya’s Problem Solving Steps

1. Understand the problem.
2. Devise a plan for solving the problem.
3. Carry out the plan.

4. Evaluate the solution for accuracy and
Its potential as a tool for solving other
problems.

5-27

Getting a Foot Iin the Door

» Try working the problem backwards
- Solve an easier related problem
— Relax some of the problem constraints

— Solve pieces of the problem first (bottom up
methodology)

- Stepwise refinement: Divide the problem into
smaller problems (top-down methodology)

5-28

Ages of Children Problem

» Person A is charged with the task of determining
the ages of B’s three children.
— B tells A that the product of the children’s ages is 36.
— A replies that another clue is required.
— B tells A the sum of the children’s ages.
— A replies that another clue is needed.
— B tells A that the oldest child plays the piano.
— A tells B the ages of the three children.

- How old are the three children?

5-29

Figure 5.5

a. Triples whose product is 36

(1,1,36) (1,6,6)
(1,2,18) (2,2,9)
(1,3,12) (2,3,6)
(1,4,9) (3,3,4)

b. Sums of triples from part (a)

1T+1+36=238 1+6+6=13
1+2+18=21 2+2+9=13
1+3+12=16 2+3+6=11
1+4+9=14 3+3+4=10

5-30

ACM ICPC 2014 (International
- Collegiate Programming Contest)

lterative Structures

 Pretest loop:
while (condition) do
(loop body)
 Posttest loop:
repeat (loop body)

until (condition)

5-32

Figure 5.8 The while loop structure

l

Condition
Test false
> condition
Condition
true
Activity

5-33

Figure 5.9 The repeat loop structure

l

> Activity
Tost
Condition condition

false

Condition
true

5-34

Search algorithms

. Sequential search ([iFEE)
- Binary search (Z9&1#%)

. . . Alice
Sequential search algorithm In Bob!
David

pseudocode David
Fred

George

Harry

procedure Search (List, TargetValue) Irene -
if (List empty) JKZ“S
then Larry
(Declare search a failure) Mary

else Nancy

(Select the first entry in List to be TestEntry; ¥ Olver.
while (TargetValue > TestEntry and
there remain entries to be considered)

do (Select the next entry in List as TestEntry.);
if (TargetValue = TestEntry)

then (Declare search a success.)

else (Declare search a failure.)
) end if

5-36

Figure 5.7 Components of repetitive
control

Initialize: Establish an initial state that will be modified toward the
termination condition

Test: Compare the current state to the termination condition
and terminate the repetition if equal

Modify: Change the state in such a way that it moves toward the
termination condition

5-37

Recursion

- The execution of a procedure leads to
another execution of the procedure.

- Multiple activations of the procedure are
formed, all but one of which are waiting for
other activations to complete.

5-38

Figure 5.12 Applying our strategy to
search a list for the entry John

Original list First sublist Second sublist

Alice

Bob

Carol

David

Elaine

Fred

George

Harry I |
lrene rene rene
John ~|J<0nn :| ’ John
Kelly elly

Larry * Larry

Mary Mary

Nancy Nancy

Oliver _| Oliver

5-39

Figure 5.14 The binary search
algorithm in pseudocode

procedure Search (List, TargetValue)

if (List empty)
then
(Report that the search failed.)
else
[Select the "middle” entry in List to be the TestEntry;
Execute the block of instructions below that is
associated with the appropriate case.
case 1: TargetValue = TestEntry
(Report that the search succeeded.)
case 2: TargetValue < TestEntry
(Apply the procedure Search to see if TargetValue
is in the portion of the List preceding TestEntry,
and report the result of that search.)
case 3: TargetValue > TestEntry
(Apply the procedure Search to see if TargetValue
is in the portion of List following TestEntry,
and report the result of that search.)
] end if

5-40

Figure 5.15

procedure Search (List, TargetValue)

if (List empty)
then (Report that the search failed.)
else
[Select the "middle” entry in List to be the TestEntry;
Execute the block of instructions below that is
associated with the appropriate case.
case 1: TargetValue = TestEntry
(Report that the search succeeded.)
case 2: TargetValue < TestEntry
(Apply the procedure Search to see if TargetValue
is in the portion of the List preceding TestEntry,
and report the result of that search.)
case 3: TargetValue > TestEntry
(Apply the procedure Search to see if TargetValue
is in the portion of List following TestEntry,
and report the result of that search.)
] end if

We are here.

procedure Search (List, TargetValue)

if (List empty)
then (Report that the search failed.)
else
[Select the "middle” entry in List to be the TestEntry;
Execute the block of instructions below that is
associated with the appropriate case.
case 1: TargetValue = TestEntry
(Report that the search succeeded.)
case 2: TargetValue < TestEntry
(Apply the procedure Search to see if TargetValue

is in the portion of the List preceding TestEntry,

and report the result of that search.)
case 3: TargetValue > TestEntry
(Apply the procedure Search to see if TargetValue
is in the portion of List following TestEntry,
and report the result of that search.)
] end if

List
Alice
> Bill

]

David —(TestEntry)
Evelyn
Fred
George

Carol

Looking for Bill

Alice
Bill
Carol
David
Evelyn
Fred
George

5-41

Figure 5.16

procedure Search (List, TargetValue)

if (List empty)
then (Report that the search failed.)
else
[Select the "middle" entry in List to be the TestEntry;
Execute the block of instructions below that is
associated with the appropriate case.
case 1: TargetValue = TestEntry
(Report that the search succeeded.)
case 2: TargetValue < TestEntry
(Apply the procedure Search to see if TargetValue
is in the portion of the List preceding TestEntry,
and report the result of that search.)
case 3: TargetValue > TestEntry
(Apply the procedure Search to see if TargetValue
is in the portion of List following TestEntry,
and report the result of that search.)

We are here.

procedure Search (List, TargetValue)

if (List empty)
then (Report that the search failed.)
else
[Select the "middle" entry in List to be the TestEntry;
Execute the block of instructions below that is
associated with the appropriate case.
case 1: TargetValue = TestEntry
(Report that the search succeeded.)
case 2: TargetValue < TestEntry

(Apply the procedure Search to see if TargetValue
is in the portion of the List preceding TestEntry,

and report the result of that search.)
case 3: TargetValue > TestEntry
(Apply the procedure Search to see if TargetValue
is in the portion of List following TestEntry,
and report the result of that search.)
] end if

List
Alice
Carol

] end if
List
Evelyn —(TestEntry)
Fred
George

\ 4

Looking for David

Alice
Carol
Evelyn
Fred
George

5-42

Figure 5.17

procedure Search (List, TargetValue)

if (List empty)
:Ilwn (Report that the search failed.)
se
[Select the "middle” entry in List to be the TestEntry,;
Execute the block of instructions below that is
associated with the appropriate case.
case 1: TargetValue = TestEntry
(Report that the search succeeded.)
case 2: TargetValue < TestEntry
(Apply the procedure Search to see if TargetValue
is in the portion of the List preceding TestEntry,
and report the result of that search.)
case 3: TargetValue > TestEntry
{Apply the procedure Search to see if TargetValue
is in the portion of List following TestEntry,

and report the result of that search.)
] end if

procedure Search (List, TargetValue)

if (List empty)
tlllen (Report that the search failed.)
else
[Select the "middle” entry in List to be the TestEntry;
Execute the block of instructions below that is
associated with the appropriate case.
case 1: TargetValue = TestEntry
(Report that the search succeeded.)
case 2: TargetValue < TestEntry
(Apply the procedure Search to see if TargetValue
is in the portion of the List preceding TestEntry,
and report the result of that search.)
case 3: TargetValue > TestEntry
(Apply the procedure Search to see if TargetValue
is in the portion of List following TestEntry,

and report the result of that search.)
] end if

List

Alice
Carol ——(TestEntry)

Evelyn ——(TestEntry)
Fred

George

A4

We are here.

procedure Search (List, TargetValue)

if (List empty)
tl1ten (Report that the search failed.)
else
[Select the "middle” entry in List to be the TestEntry;
Execute the block of instructions below that is
associated with the appropriate case.
case 1: TargetValue = TestEntry
(Report that the search succeeded.)
case 2: TargetValue < TestEntry
(Apply the procedure Search to see if Targetvalue
is in the portion of the List preceding TestEntry,
and report the result of that search.)
case 3: TargetValue > TestEntry
(Apply the procedure Search to see if TargetValue
i in the portion of List following TestEntry,

and report the result of that search.)
] end if

Looking for David

5-43

Sort algorithm

- Insertion sort FENHEF)

. Selection sort (EEFFHERF)
. Bubble sort (Bi8HEF)

Insertion sort

Initial list: | Fred
Alex
Diana
Byron
Carol
Sorted{ [Fred Fred | » Alex | g Alex |«
Alex Fred Fred
Diana Diana —J» |Diana Diana
Byron Byron Byron Byron
Carol Carol Carol Carol
ot {[B] [l P B[]
Diana = 4 Fred Fred
Byron Byron Byron Byron
Carol Carol Carol Carol
Alex Alex [Byron] Alex Alex | A
Sorted ~|: Diana Diana Byron
Fred Fred > E Diana Diana
Byron Fred Fred
Carol Carol Carol Carol
Alex Alex Carol] Alex [Carol Alex |
Byron Byron Byron Byron
Sorted Diana Diana - < Carol
Fred Fred Diana Diana
Carol Q Fred Fred
Sorted list:| Alex
Byron
Carol
Diana
Fred

5-45

Figure 5.11 The insertion sort
algorithm expressed in pseudocode

procedure Sort (List)

N « 2;
while (the value of N does not exceed the length of List) do
(Select the Nth entry in List as the pivot entry;
Move the pivot entry to a temporary location leaving a hole in List;
while (there is a name above the hole and that name is greater than the pivot) do
(move the name above the hole down into the hole leaving a hole above the name)
Move the pivot entry into the hole in List;

N e N+ T
)

5-46

Algorithm Efficiency

« Measured as number of instructions
executed

- Big O notation: Used to represent
efficiency classes

— Example: Insertion sort is in O(n?)
- Best, worst, and average case analysis

5-47

Figure 5.19 Graph of the worst-case
analysis of the insertion sort algorithm

Time reqpired to execute
the algorithm worst : 1+2+3+...+(n-1)=1/2(n?-n)

average : EE=[&RAI—31/4(n?-n)
EZE : O(n?)

Time increasing
by increasing L| ..o
increments :

— — : Length of list
Length increasing by
uniform increments

5-48

Figure 5.18 Applying the insertion sort In
a worst-case situation

Initial
list 1st pivot
Elaine 1CEIaine
David David
Carol Carol
Barbara Barbara
Alfred Alfred

Comparisons made for each pivot

2nd pivot

2

David
Elaine
Carol
Barbara
Alfred

3rd pivot

6
5
4

Carol
David
Elaine
Barbara
Alfred

~ 00 W o

4th pivot

Barbara
Carol
David
Elaine
Alfred

Sorted
list

Alfred
Barbara
Carol
David
Elaine

5-49

Figure 5.20 Graph of the worst-case
analysis of the binary search algorithm

Time required to execute worst : Ign
the algorithm E%E : O(Ign)

Time increasing
by decreasing
increments

' : ' Length of list
Length increasing by
uniform increments

5-50

Software Verification

* Proof of correctness
— Assertions
* Preconditions
* Loop Invariants

» Testing

5-51

Chain Separating Problem

- A traveler has a gold chain of seven links.
- He must stay at an isolated hotel for seven nights.

- The rent each night consists of one link from the
chain.

- What is the fewest number of links that must be
cut so that the traveler can pay the hotel one link
of the chain each morning without paying for
lodging In advance?

5-52

Figure 5.21 Separating the chain
using only three cuts

Cut

OO0O0O0O0O0O

Figure 5.22 Solving the problem with
only one cut

Cut

Figure 5.23 The assertions associated
with a typical while structure

JL Precondition

Loop invariant l
; B

_C Loop invariant

and termination condition

5-55

» Questions?

2-56

Movie: the social network

2-57

Learning Algorithms

» Every class in CS has some relations with
algorithms

— But some classes are not obviously related to
algorithms, such as math classes.

- MERS, BaEE, I, M=RGT -
- Why should we study them?
— They are difficult, and boring, and difficult...

5-58

Why Study Math?

- Train the logical thinking and reasoning

— Algorithm is a result of logical thinking:
correctness, efficiency, ...

— Good programming needs logical thinking and
reasoning. For example, debugging.

* Learn some basic tricks

— Many beautiful properties of problems can be
revealed through the study of math

— Standing on the shoulders of giants

5-59

Try to Solve These Problems

1. Given a network of thousands nodes, find
the shortest path from node A to node B

— The shortest path problem (BEIEZ)

2. Given a circuit of million transistors, find
out the current on each wire
— Kirchhoff's current law (Ze1HE%)

3. In CSMA/CD, what is the probability of
collisions?

— Network analysis (IEZEHiT)

5-60

fRIFR

- Limits, derivatives, and integrals of
continuous functions.

- Used inalmost every field

- T, EED T

- (SSALIE, BIFACIE, IR IR
-BEE, ALER, i8R, itTELE

HE

- Also the foundation of many other math
- BIERGgT, TEEE

5-61

RS

- Discrete structure, graph, integer, logic,
abstract algebra, combinatorics

- The foundation of computer science
— Every field in computer science needs it

~ Particularly, &%, $=BIEigit, B0, S

18, ITEAHM%S, CAD, ITHRIEE

- Extended courses

16

— Special topics on discrete structure, graph

theory, concrete math

5-62

S IEES

 Vectors, matrices, tensors, vector spaces,
linear transformation, system of equations

» Used in almost everywhere when dealing
with more than one number

- MR T, RBEHT
- (B4, BRAIE
- Bl E A__%“ﬁg, HETAR, 1TTEL
— CAD, Eaf't5z

IR
HE

5-63

it

- Probability models, random variables,
probability functions, stochastic processes

- Every field uses it

— Particularly, (283 #T, ZUBED 1T, [E5RLIE, ElfR
GI8, BlEFETE, ATERE, iTEMK. .

— Other examples: randomized algorithm, queue
theory, computational finance, performance
analysis

5-64

TiEF

» A condensed course containing essential
math tools for most engineering disciplines

— Partial differential equations, Fourier analysis,
Vector calculus and analysis

» Used In the fields that need to handle
continuous functions

- Mo, SMEED T, (FEE, ERME, BF
ITE, ATERE, itEHINR, CAD,RBERIRIT

5-65

