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Basic Data Structures

• Homogeneous and Heterogeneous

• Static and Dynamic

• List

– Stack

– Queue

• Tree
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Figure 8.1 Lists, stacks, and queues
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Terminology for Lists

• List: A collection of data whose entries are 

arranged sequentially

• Head: The beginning of the list

• Tail: The end of the list
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Terminology for Stacks

• Stack: A list in which entries are removed 

and inserted only at the head

• LIFO: Last-in-first-out

• Top: The head of list (stack)

• Bottom or base: The tail of list (stack)

• Pop: To remove the entry at the top

• Push: To insert an entry at the top
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Terminology for Queues

• Queue: A list in which entries are removed 

at the head and are inserted at the tail

• FIFO: First-in-first-out
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Figure 8.2 An example of an 

organization chart
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Terminology for a Tree

• Tree: A collection of data whose entries 

have a hierarchical organization

• Node: An entry in a tree

• Root node: The node at the top

• Terminal or leaf node: A node at the 

bottom
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Terminology for a Tree (continued)

• Parent: The node immediately above a 
specified node

• Child: A node immediately below a 
specified node

• Ancestor: Parent, parent of parent, etc.

• Descendent: Child, child of child, etc.

• Siblings: Nodes sharing a common parent
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Terminology for a Tree (continued)

• Binary tree: A tree in which every node 

has at most two children

• Depth: The number of nodes in longest 

path from root to leaf
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Figure 8.3 Tree terminology
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Additional Concepts

• Static Data Structures: Size and shape of 

data structure does not change

• Dynamic Data Structures: Size and shape 

of data structure can change

• Pointers: Used to locate data
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Figure 8.4 Novels arranged by title 

but linked according to authorship
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Storing Arrays

• Homogeneous arrays

– Row-major order versus column major 
order

– Address polynomial

• Heterogeneous arrays

– Components can be stored one after the other 
in a contiguous block

– Components can be stored in separate 
locations identified by pointers
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Figure 8.5 The array of temperature 

readings stored in memory starting 

at address x
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Figure 8.6 A two-dimensional array with 

four rows and five columns stored in row 

major order



Homogeneous array
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Figure 8.7 Storing the heterogeneous 

array Employee

char

int

real



Heterogeneous array
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Storing Lists

• Contiguous list: List stored in a 

homogeneous array

• Linked list: List in which each entries are 

linked by pointers

– Head pointer: Pointer to first entry in list

– NIL pointer: A “non-pointer” value used to 

indicate end of list 
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Figure 8.8 Names stored in memory 

as a contiguous list
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Figure 8.9 The structure of a linked 

list



8-23

Figure 8.10 Deleting an entry from a 

linked list
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Figure 8.11 Inserting an entry into a 

linked list
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Storing Stacks and Queues

• Stacks usually stored as contiguous lists

• Queues usually stored as Circular 

Queues

– Stored in a contiguous block in which the first 

entry is considered to follow the last entry

– Prevents a queue from crawling out of its 

allotted storage space
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Figure 8.12 A stack in memory



Stack

• Stack-like behavior is 

sometimes called "LIFO" for 

Last In First Out.

• The top item of the stack is 

81. The bottom of the stack 

contains the integer -92

• Stack pointer $sp always 

points to the top of the stack. 

27



• To push an item onto the stack, 

first subtract 4 from the stack 

pointer, then store the item at 

the address in the stack pointer

28

MIPS (32-bit) example



• To pop the top item from 

a stack, copy the item 

pointed at by the stack 

pointer, then add 4 to 

the stack pointer.

29
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Figure 8.13 A queue implementation with 

head and tail pointers
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Figure 8.14 A circular queue 

containing the letters P through V
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Storing Binary Trees

• Linked structure

– Each node = data cells + two child pointers

– Accessed via a pointer to root node

• Contiguous array structure

– A[1] = root node

– A[2],A[3] = children of A[1]

– A[4],A[5],A[6],A[7] = children of A[2] and A[3]
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Figure 8.15 The structure of a node 

in a binary tree
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Figure 8.16  The conceptual and 

actual organization of a binary tree 

using a linked storage system
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Figure 8.17 A tree stored without 

pointers
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Figure 8.18 A sparse, unbalanced tree 

shown in its conceptual form and as it 

would be stored without pointers
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Manipulating Data Structures

• Ideally, a data structure should be 
manipulated solely by pre-defined 
procedures.

– Example:  A stack typically needs at least 
push and pop procedures.

– The data structure along with these 
procedures constitutes a complete abstract 
tool.
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Figure 8.19 A procedure for printing 

a linked list
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Case Study

Problem: Construct an abstract tool 

consisting of a list of names in alphabetical 

order along with the operations search, 

print, and insert.
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Figure 8.20 The letters A through M 

arranged in an ordered tree
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Figure 8.21 The binary search as 

it would appear if the list were 

implemented as a linked binary tree
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Figure 8.22 The successively smaller trees 

considered by the procedure in Figure 

8.18 when searching for the letter J
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Figure 8.23 Printing a search tree in 

alphabetical order
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Figure 8.24 A procedure for printing 

the data in a binary tree
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Figure 8.25 Inserting the entry 

M into the list B, E, G, H, J, K, N, P stored 

as a tree
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Figure 8.26 A procedure for inserting a 

new entry in a list stored as a binary tree
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User-defined Data Type

• A template for a heterogeneous structure

• Example:

define type EmployeeType to be

{char    Name[25];

int     Age;

real    SkillRating;

} 
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Abstract Data Type

• A user-defined data type with procedures for access and 
manipulation

• Example:
define type StackType to be

{int StackEntries[20];

int StackPointer = 0;

procedure push(value)

{StackEntries[StackPointer] ← value;

StackPointer ¬ StackPointer + 1;

}

procedure pop . . .  

}
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Class

• An abstract data type with extra features

– Characteristics can be inherited

– Contents can be encapsulated

– Constructor methods to initialize new objects
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Figure 8.27 A stack of integers 

implemented in Java and C#


