Chapter 8:
Data Abstractions

Computer Science: An Overview
Tenth Edition

by
J. Glenn Brookshear

vy
[T

Addison
Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Basic Data Structures

- Homogeneous and Heterogeneous
- Static and Dynamic
» List

— Stack

— Queue

 Tree

8-2

Figure 8.1 Lists, stacks, and queues

[Jill Head —
Bob
List — Stack —
Devon
| Maurice — Tail [

a. A list of names

b. A stack of books

_—Top

=

™~ Bottom

Tail/

c. A queue of people

8-3

Terminology for Lists

» List: A collection of data whose entries are
arranged sequentially

- Head: The beginning of the list
 Tall: The end of the list

8-4

Terminology for Stacks

- Stack: A list in which entries are removed
and inserted only at the head

- LIFO: Last-in-first-out

» Top: The head of list (stack)

- Bottom or base: The talil of list (stack)
* Pop: To remove the entry at the top

- Push: To insert an entry at the top

8-5

Terminology for Queues

« Queue: A list in which entries are removed
at the head and are inserted at the tall

* FIFO: First-in-first-out

8-6

Figure 8.2 An example of an
organization chart

Terminology for a Tree

- Tree: A collection of data whose entries
have a hierarchical organization

- Node: An entry in a tree
- Root node: The node at the top

- Terminal or leaf node: A node at the
bottom

8-8

Terminology for a Tree (continued)

- Parent: The node immediately above a
specified node

- Child: A node immediately below a
specified node

- Ancestor: Parent, parent of parent, etc.
Descendent: Child, child of child, etc.
Siblings: Nodes sharing a common parent

8-9

Terminology for a Tree (continued)

- Binary tree: A tree in which every node
has at most two children

» Depth: The number of nodes in longest
path from root to leaf

8-10

Figure 8.3 Tree terminology

/ Root node

‘ n

Siblings

Subtree

B Terminal (or leaf) nodes

8-11

Additional Concepts

- Static Data Structures: Size and shape of
data structure does not change

- Dynamic Data Structures: Size and shape
of data structure can change

* Pointers: Used to locate data

8-12

Figure 8.4 Novels arranged by title
but linked according to authorship

/| /|
T I

A Farewell to Arms For Whom the Bell Tolls The Sun Also Rises
by Ernest Hemingway by Ernest Hemingway by Ernest Hemingway
Pointer Pointer Pointer

[f /1 I

| 71 71
L \ J N J J

8-13

Storing Arrays

- Homogeneous arrays

— Row-major order versus column major
order

— Address polynomial

- Heterogeneous arrays

— Components can be stored one after the other
In a contiguous block

— Components can be stored in separate
locations identified by pointers

8-14

Figure 8.5 The array of temperature
readings stored in memory starting
at address X

Addresses—[X X +1 X+2 X+3 X+4 x+5b x+6

Memoryg[i I
cells

|
Readings[1] ‘

Readings [2]

Readings [3]

Readings [4]

8-15

Figure 8.6 A two-dimensional array with
four rows and five columns stored in row
major order

Conceptual array

I
: Row|1 :
| Row 2 |
| Rlow:Bl
w4
Machine’'s memory |7
I I I I I
1 L | L L | L I
fl | Row 1 1| I Row 2 | | Row I Row4 | I 3
] l | | 1 | | |] 1 | | l | | 1 1

Entry from 4th column in Row 3

8-16

Homogeneous array

MORER L 10 -TE R
#include <stdio h=

Iaing)

d

mt Ls=0;

foni=0=1014++)
a=s+a[l];
printld”),
;

mnt a[10]={66,55,75 42 2677 96, 89 Ts 561,

MOER 2 10T ET PRI E
#include =stdio h=

Iriaing)

{

mt 15

int a[10]={66,55.75,42 86 7706, 55,78 561

a=a[l];

for(i=1i=10:++)
if {z=afi]) s=all,

prntf] “Yed”,s);

8-17

Figure 8.7 Storing the heterogeneous
array Employee

Emplfyee
I |
Employee.Name Employee.Age Employee.SkillRating
N —F— I\
| / \
Addresses: x X+ 25 X+ 26

a. Array stored in a contiguous block

| _— Employee.Name

char

Pointers — > Employee.Age int

— ' _
Employee.Ski1llRating

b. Array components stored in separate locations real

8-18

Heterogeneous array

Hinclude <stdio.h>

A% Define 3 tvpe polint to ke 3 struct with integer members X, ¥ %/
typedef struct |

int x:
int v
} point:

int main(wvoid)l |

A% Define 3 warigble p of tvpe point, and I1ritizlize 311 its members inline! *#7
point p = {1,3};

A% Define 3 wariable g of tvpe point. Members 3re uninitialized. *7
point o:

£* Assigr the walue of p to g, copies the member vwalues from p into . */7
qg = p-

A% Change the member ¥ of g to khave the walue of 3 %7
g.x = 3:

A% Demonstirdte we have 3 copy and that they dre now different. #5
if (p.x '= g.®) printf("The mwembers are not equal! 4 '= 34", p.x, og.x)]:

return 0;

8-19

Storing Lists

- Contiguous list: List stored in a
homogeneous array

* Linked list: List in which each entries are
linked by pointers

— Head pointer: Pointer to first entry in list

— NIL pointer: A “non-pointer” value used to
iIndicate end of list

8-20

Figure 8.8 Names stored in memory
as a contiguous list

Contiguous block of memory cells
I

/L

L,

H rf

First name Second name Last name
stored here stored here stored here

8-21

Figure 8.9 The structure of a linked

list

Head pointer

Name

Pointer

Name Pointer

|

S

(Name Pointer

NIL

8-22

Figure 8.10 Deleting an entry from a
linked list

Head pointer

v Name

Pointer

B

New pointer

Deleted entry

Name Pointer
%
fName Pointer
NIL

8-23

Figure 8.11 Inserting an entry into a
linked list

Head pointer

h A

Name

New entry

Name Pointer

New pointer New pointer

Pointer f 41’

Old pointer

Name

Pointer

J

(Name

Pointer

NIL

8-24

Storing Stacks and Queues

 Stacks usually stored as contiguous lists

- Queues usually stored as Circular
Queues

— Stored In a contiguous block in which the first
entry Is considered to follow the last entry

— Prevents a queue from crawling out of its
allotted storage space

8-25

Figure 8.12 A stack in memory

Stack’s Reserved block of memory cells

base |
ﬁ Sabcontio ||\

Space for growth

Stack pointer

8-26

Stack

» Stack-like behavior is
sometimes called "LIFO" for
Last In First Out.

- The top item of the stack Is
81. The bottom of the stack
contains the integer -92

- Stack pointer $sp always
points to the top of the stack.

-

Increasing Addresses

-92

36

-23

70

B1

~— $sp

27

» To push an item onto the stack,

92
first subtract 4 from the stack : i;f
pointer, then store the item at %| —
the address in the stack pointer ; o
[MIPS (32-bit) example }
PUSH the item in $t0:
subu $sp, 3sp,4 # point to the place for the new item,
sw 3t0, (3=p2 # store the contents of $t0 as the new top.

28

* To pop the top item from

] 1 -92
a stack, copy the item & .
pointed at by the stack | =
: o| [|—ssp ,,
pointer, then add 4 to j| om0 |
. Q A
the stack pointer. - e
POP the item into 3t0:
Tw 3t0, (3=pd # Copy top the item to $t0.
addu $sp, $sp,4 # Point to the item beneath the old top.

29

Head
pointer

Tail
pointer

a. Empty queue

Head
pointer

Tail
pointer

MW

]

S

:

c. After removing A and
inserting D

Head
pointer

Tail
pointer

Figure 8.13 A gqueue implementation with
head and tail pointers

=

MWV
A
B
C

b. After inserting entries A, B,

Head
pointer

Tail
pointer

g

and

:

—

d. After removing B and
inserting E

Figure 8.14 A circular queue

containing the letters P through V

First cell

in block \ -

Head

(7T =« I I T B - |

pointer

Tail

pointer |
Last cell /
in block

a. Queue as actually stored

Head
pointer

Tail
pointer

b. Conceptual storage with last cell “adjacent” to first cell

8-31

Storing Binary Trees

- Linked structure
— Each node = data cells + two child pointers
— Accessed via a pointer to root node

- Contiguous array structure
— A[1] = root node
— A[2],A[3] = children of A[1]
— A[4],A[5],A[6],A[7] = children of A[2] and A[3]

8-32

Figure 8.15 The structure of a node

In a binary tree

Cells containing
the data

Left child
pointer

Right child
pointer

8-33

Figure 8.16 The conceptual and
actual organization of a binary tree
using alinked storage system

Conceptual tree

/ A\
B C
D E F
Actual storage organization
Root pointer (1
oA | ! C NIL
B | D | NL | NL F | Nk | NL

\ > E NIL NIL

8-34

Figure 8.17 A tree stored without
pointers

B/A\C
N

F
Actual storage organization
1 2 3 4 5 6 7
A B C D E F
I 7 || | |
Root node / /
Nodes in 2nd Nodes in 3rd

level of tree level of tree

8-35

Figure 8.18 A sparse, unbalanced tree
shown In its conceptual form and as it
would be stored without pointers

Conceptual tree
B C\

D

S\

E

Actual storage organization

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
A B = D E
/ | ; [; [; |

root 2nd level 3rd level 4th level

8-36

Manipulating Data Structures

- |deally, a data structure should be
manipulated solely by pre-defined
procedures.

— Example: A stack typically needs at least
push and pop procedures.

— The data structure along with these
procedures constitutes a complete abstract
tool.

8-37

Figure 8.19 A procedure for printing
a linked list

procedure PrintList (List)
CurrentPointer « head pointer of List.
while (CurrentPointer is not NIL) do
(Print the name in the entry pointed to by CurrentPointer;
Observe the value in the pointer cell of the List entry
pointed to by CurrentPointer, and reassign CurrentPointer

to be that value.)

8-38

Case Study

Problem: Construct an abstract tool
consisting of a list of names in alphabetical
order along with the operations search,
print, and insert.

8-39

Figure 8.20 The letters A through M
arranged in an ordered tree

D/G\K
B/ \F I/ \M

SN/ N

Figure 8.21 The binary search as
It would appear If the list were

Implemented as a linked binary tree

procedure Search(Tree, TargetValue)

if (root pointer of Tree = NIL)
then
(declare the search a failure)
else
(execute the block of instructions below that is
associated with the appropriate case)
case 1: TargetValue = value of root node
(Report that the search succeeded)
case 2: TargetValue < value of root node
(Apply the procedure Search to see if
TargetValue is in the subtree identified
by the root’s left child pointer and
report the result of that search)
case 3: TargetValue > value of root node
(Apply the procedure Search to see if
TargetValue is in the subtree identified
by the root’s right child pointer and
report the result of that search)
) end if

8-41

Figure 8.22 The successively smaller trees
considered by the procedure in Figure
8.18 when searching for the letter J

8-42

Figure 8.23 Printing a search tree in

alphabetical ord

er

/ F\

B/D\E
A/ \C

1. Print the left
branch in
alphabetical
order

G/H \J
/

2. Print 3. Print the
the root right branch in
node alphabetical order

8-43

Figure 8.24 A procedure for printing
the data in a binary tree

procedure PrintTree (Tree)

if (Tree is not empty)
then (Apply the procedure PrintTree to the tree that
appears as the left branch in Tree;
Print the root node of Tree;
Apply the procedure PrintTree to the tree that
appears as the right branch in Tree)

8-44

Figure 8.25 Inserting the entry
M into thelist B, E, G, H, J, K, N, P stored
as atree

a. Search for the new entry until its absence is detected

b. This is the position in which the new entry should be attached
/H \
E /N \
B G /K\ P
J M

8-45

Figure 8.26 A procedure for inserting a
new entry In a list stored as a binary tree

procedure Insert(Tree, NewValue)

if (root pointer of Tree = NIL)
(set the root pointer to point to a new leaf
containing NewValue)
else (execute the block of instructions below that is
associated with the appropriate case)

case 1: NewValue = value of root node
(Do nothing)
case 2: NewValue < value of root node
(if (left child pointer of root node = NIL)
then (set that pointer to point to a new
leaf node containing NewValue)
else (apply the procedure Insert to insert
NewValue into the subtree identified

by the left child pointer)
case 3: NewValue > value of root node
(if (right child pointer of root node = NIL)
then (set that pointer to point to a new
leaf node containing NewValue)

else (apply the procedure Insert to insert
NewValue into the subtree identified

by the right child pointer)

) end if

8-46

User-defined Data Type

- A template for a heterogeneous structure

- Example:

define type EmployeeType to be
{char Name [25];

int Age;

real SkillRating;

}

8-47

Abstract Data Type

A user-defined data type with procedures for access and
manipulation

- Example:
define type StackType to be
{int StackEntries[20];
int StackPointer = 0O;
procedure push (value)
{StackEntries[StackPointer] « wvalue;

StackPointer = StackPointer + 1;
}

procedure pop

}

8-48

Class

» An abstract data type with extra features
— Characteristics can be inherited
— Contents can be encapsulated
— Constructor methods to initialize new objects

8-49

Figure 8.27 A stack of integers
iImplemented in Java and C#

class StackOfIntegers
{private int[] StackEntries

= new int[20];
private int StackPointer = 0;

public void push(int NewEntry)
{if (StackPointer < 20)

StackEntries [StackPointer++] = NewEntry;

public int pop ()
{if (StackPointer > 0) return StackEntries[--StackPointer];
else return O0;

}
}

8-50

