
Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Computer Science: An Overview

Tenth Edition

by

J. Glenn Brookshear

Chapter 8:

Data Abstractions

8-2

Basic Data Structures

• Homogeneous and Heterogeneous

• Static and Dynamic

• List

– Stack

– Queue

• Tree

8-3

Figure 8.1 Lists, stacks, and queues

8-4

Terminology for Lists

• List: A collection of data whose entries are

arranged sequentially

• Head: The beginning of the list

• Tail: The end of the list

8-5

Terminology for Stacks

• Stack: A list in which entries are removed

and inserted only at the head

• LIFO: Last-in-first-out

• Top: The head of list (stack)

• Bottom or base: The tail of list (stack)

• Pop: To remove the entry at the top

• Push: To insert an entry at the top

8-6

Terminology for Queues

• Queue: A list in which entries are removed

at the head and are inserted at the tail

• FIFO: First-in-first-out

8-7

Figure 8.2 An example of an

organization chart

8-8

Terminology for a Tree

• Tree: A collection of data whose entries

have a hierarchical organization

• Node: An entry in a tree

• Root node: The node at the top

• Terminal or leaf node: A node at the

bottom

8-9

Terminology for a Tree (continued)

• Parent: The node immediately above a
specified node

• Child: A node immediately below a
specified node

• Ancestor: Parent, parent of parent, etc.

• Descendent: Child, child of child, etc.

• Siblings: Nodes sharing a common parent

8-10

Terminology for a Tree (continued)

• Binary tree: A tree in which every node

has at most two children

• Depth: The number of nodes in longest

path from root to leaf

8-11

Figure 8.3 Tree terminology

8-12

Additional Concepts

• Static Data Structures: Size and shape of

data structure does not change

• Dynamic Data Structures: Size and shape

of data structure can change

• Pointers: Used to locate data

8-13

Figure 8.4 Novels arranged by title

but linked according to authorship

8-14

Storing Arrays

• Homogeneous arrays

– Row-major order versus column major
order

– Address polynomial

• Heterogeneous arrays

– Components can be stored one after the other
in a contiguous block

– Components can be stored in separate
locations identified by pointers

8-15

Figure 8.5 The array of temperature

readings stored in memory starting

at address x

8-16

Figure 8.6 A two-dimensional array with

four rows and five columns stored in row

major order

Homogeneous array

8-17

8-18

Figure 8.7 Storing the heterogeneous

array Employee

char

int

real

Heterogeneous array

8-19

8-20

Storing Lists

• Contiguous list: List stored in a

homogeneous array

• Linked list: List in which each entries are

linked by pointers

– Head pointer: Pointer to first entry in list

– NIL pointer: A “non-pointer” value used to

indicate end of list

8-21

Figure 8.8 Names stored in memory

as a contiguous list

8-22

Figure 8.9 The structure of a linked

list

8-23

Figure 8.10 Deleting an entry from a

linked list

8-24

Figure 8.11 Inserting an entry into a

linked list

8-25

Storing Stacks and Queues

• Stacks usually stored as contiguous lists

• Queues usually stored as Circular

Queues

– Stored in a contiguous block in which the first

entry is considered to follow the last entry

– Prevents a queue from crawling out of its

allotted storage space

8-26

Figure 8.12 A stack in memory

Stack

• Stack-like behavior is

sometimes called "LIFO" for

Last In First Out.

• The top item of the stack is

81. The bottom of the stack

contains the integer -92

• Stack pointer $sp always

points to the top of the stack.

27

• To push an item onto the stack,

first subtract 4 from the stack

pointer, then store the item at

the address in the stack pointer

28

MIPS (32-bit) example

• To pop the top item from

a stack, copy the item

pointed at by the stack

pointer, then add 4 to

the stack pointer.

29

8-30

Figure 8.13 A queue implementation with

head and tail pointers

8-31

Figure 8.14 A circular queue

containing the letters P through V

8-32

Storing Binary Trees

• Linked structure

– Each node = data cells + two child pointers

– Accessed via a pointer to root node

• Contiguous array structure

– A[1] = root node

– A[2],A[3] = children of A[1]

– A[4],A[5],A[6],A[7] = children of A[2] and A[3]

8-33

Figure 8.15 The structure of a node

in a binary tree

8-34

Figure 8.16 The conceptual and

actual organization of a binary tree

using a linked storage system

8-35

Figure 8.17 A tree stored without

pointers

8-36

Figure 8.18 A sparse, unbalanced tree

shown in its conceptual form and as it

would be stored without pointers

8-37

Manipulating Data Structures

• Ideally, a data structure should be
manipulated solely by pre-defined
procedures.

– Example: A stack typically needs at least
push and pop procedures.

– The data structure along with these
procedures constitutes a complete abstract
tool.

8-38

Figure 8.19 A procedure for printing

a linked list

8-39

Case Study

Problem: Construct an abstract tool

consisting of a list of names in alphabetical

order along with the operations search,

print, and insert.

8-40

Figure 8.20 The letters A through M

arranged in an ordered tree

8-41

Figure 8.21 The binary search as

it would appear if the list were

implemented as a linked binary tree

8-42

Figure 8.22 The successively smaller trees

considered by the procedure in Figure

8.18 when searching for the letter J

8-43

Figure 8.23 Printing a search tree in

alphabetical order

8-44

Figure 8.24 A procedure for printing

the data in a binary tree

8-45

Figure 8.25 Inserting the entry

M into the list B, E, G, H, J, K, N, P stored

as a tree

8-46

Figure 8.26 A procedure for inserting a

new entry in a list stored as a binary tree

8-47

User-defined Data Type

• A template for a heterogeneous structure

• Example:

define type EmployeeType to be

{char Name[25];

int Age;

real SkillRating;

}

8-48

Abstract Data Type

• A user-defined data type with procedures for access and
manipulation

• Example:
define type StackType to be

{int StackEntries[20];

int StackPointer = 0;

procedure push(value)

{StackEntries[StackPointer] ← value;

StackPointer ¬ StackPointer + 1;

}

procedure pop . . .

}

8-49

Class

• An abstract data type with extra features

– Characteristics can be inherited

– Contents can be encapsulated

– Constructor methods to initialize new objects

8-50

Figure 8.27 A stack of integers

implemented in Java and C#

