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Motivation: smoothness

* |[n many applications we need smooth shapes
« without discontinuities

» So far we can make things with corners



Limitations of Polygonal Meshes

* Planar facets

 Fixed resolution

» Deformation is difficult

« Hard for parameterization




Stanford Bunny (1k triangles)

* Normal Smooth




Problem

« Still low resolution especially at silhouettes

« S0 using more triangles
* 10K triangles or more? Not always good enough




Non-Polygonal Modeling
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Curves

* Draw using discretization
« Can it be modeled as line segments?
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Spline curve

« Smooth curve defined by some control points
* Moving the control points changes the curve
* Interpolation vs approximation



Interpolation Splines

* Imaging an elastic bar made of wood, bamboo
or metal
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Smoothness and Control

* Physically, curvature minimization based on
fixed pins
* Mathematically, choosing low-order

polynomials as smooth functions and passing
through control points



Interpolation Curves

» Curve is constrained to pass through all control
points

* Given points P, P4, ..., P, find lowest degree
polynomial which passes through the points

x(t)=a_ ™! + . +at? +at+a,
y(t) =b,_ ™1 + ..+ b,t? + byt + by

Q(t) = GBT(t) = Geometry G - Spline Basis B - Power Basis T(t)



Linear Interpolation

« Simplest "curve" between two points
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Q(t) = GBT(t) = Geometry G - Spline Basis B - Power Basis T(t)



Hermite spline curve

* Piecewise cubic
» Constraints: endpoints and tangents
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Hermite spline curve

» Solve constraints to find coefficients

r(t) = at® + bt* +ct +d

T (t) = at® + 2bt + ¢ d = xp

r(0)=xzp=d c =Ty
r(l)=x1=a+b+ec+d a = 2xy — 2xy + x5 + T
r'(0) =z5=c b= —3x¢ + 31, — 21 — 1]
(1) =z} =3a+2b+c



Hermite spline curve

f(t) = at’ + bt +ct +d

X X X X1[¢3]
X X X X 2
[pO pl pZ p3] X X X X tt
X X X xl|1]

Q(t) = GBT(t) = Geometry G - Spline Basis B - Power Basis T(t)



Hermite spline curve

f(t) = at’ + bt +ct +d

2 =3 0 1][¢3
—2 3 0 0]]¢?
[po P1 to t1] 1 —2 1 olls
1 -1 0 0]11.

f () = bo(t)py + b1 (£)py + by (t)p2 + b3(t)p3



Hermite spline curve

f(t) =at’ + bt +ct +d

X X X X71[¢3]
X X X X 2
[P0 P1 P2 D3] X X X X tt
X X X x1|1

f(t) = bo(t)pg + by (£)py + by (t)p2 + b3(t)p3



The hermite basis functions
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Interpolation vs Approximation

* Interpolation Curve —over constrained —lots of
(undesirable?) oscillations

R

« Approximation Curve —more reasonable?




Hermite to Bézier

« Mixture of points and vectors is awkward
« Specify tangents as differences of points



Cubic Bézier Curve

« Control points
« Curve passes through first & last control point
 Curve is tangent at P, to (P4-P,) and at P, to (P,-P5)




Hermite to Bézier

Po = o
P1 = Qs
to = 3(d1 — qo)
t1 =3(qs — q2)

1 0 -3 0
0 0 3 0
*lpopitotil =laoqazasl|g o o _3
01 0 3.






Hermite to Bézier

Po = Yo
P1 = qs
to = 3(d1 — qo)
t1 =3(q3 — q2)

1 0 -3 0][2 -3 0 1][¢3]
) 0 0 3 0f|-2 3 0 o0]]¢
[90 9192 q3] 0 0 0 =3|l1 =2 1 ollt
010 3]l1 -1 0 o0]]|1]






Bezier matrix

-1 3 =3 1|[¢3

3 —6 3 0]t

° Q(t) — [qO d1 42 q3] —3 3 0 0O tt
1 O 0 O0]L1.

* These are defined as Bernstein polynomials

n! . .
B'(t) = - —t'(1 —t)" 0<i<n
‘ i!(n—1)!

Q(t) = GBT(t) = Geometry G - Spline Basis B - Power Basis T(t)



Cubic Bézier Curves

Q) = (1 — )P +3¢(1 — )Py + 382(1 —t) Py + £3F4

: —1 3 -3 '1

3 —6 3 0
Q(t) — GBT(t) BBEE?ET - —3 :ﬂ) 0 0
10 00

Bi(t) = (1 —£)% By(t) = 3¢(1 — )% Bs(t) = 36°(1 — 8); Bg(t) = ¢°



e Questions?



Another way to Bezier segments

» Start from Q(t) = p,

*Po



Another way to Bezier segments

* A piecewise linear spline segment
 two control points per segment
 blend them with weights aand 8=1-a

P1



Another way to Bezier segments

A linear blend of two piecewise linear
segments
* three control points now
* interpolate on both segments using a and
* blend the results with the same weights

* makes a quadratic spline segment

* finally, a curve! |
P10 = app + 5P

P11 = ap; + 5p2

P20 = apio + OP1.1
= aapg + afp; + Bap: + 88p2
= a’pg + 2a8p; + 52p;






Another way to Bezier segments

« Cubic segment: blend of two quadratic
segments
« four control points now (overlapping sets of 3)
* interpolate on each quadratic using a and 8
* blend the results with the same weights

* makes a cubic spline segment

* this is the familiar one for graphics—but you can
keep going

P30 =ap2,0 + FPp21
—aaaPg + aafp; + afap; + aB6ps
Baapi + Bafps: + BBaps + B858ps
—apo + 3a?6p; + 3a8%ps + s



P3



de Casteljau's algorithm

* Arecurrence for computing points on Bézier
spline segments

P
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Continuity C @

« C%continuous
e curve/surface has no breaks/gaps/holes
« "watertight”

« C1continuous
e curve/surface derivative is continuous
* "looks smooth, no facets”

e C2continuous
e curve/surface 2" derivative is continuous
 Actually important for shading



Connecting Cubic Bezier
Curves

* How can we guarantee CO continuity (no gaps)?

* How can we guarantee C1 continuity (tangent
vectors match)?

« Asymmetric: Curve goes through some control
points but misses others




Properties of Béezier Splines

e Convex hull property
 Continuity
« Affine invariance
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BSpline

« 24 control points, Knot points
 Locally cubic (Bézier), Low order in general

« Curve is not constrained to pass through any control
points
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BSplines
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BSpline vs Bezier

https://pages.mtu.edu/~shene/COURSES/cs3621/NOTES/



https://pages.mtu.edu/~shene/COURSES/cs3621/NOTES/

Bézier vs BSpline

» Relationship to the control points is different
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Bezier




NURBS

* BSpline: uniform cubic Bspline
* Restriction of Polynomials

* NURBS: Non-Uniform Rational BSpline

* non-uniform = different spacing between
the blending functions,

* rational = quotients of polynomials



e Questions?



Subdivision Curve

» Chaikin’s algorithm
1 quarter 3 quarter algorithm



Subdivision curves

* Curve is defined as the limit of a refinement
process
 properties of curve depend on the rules
« — some rules make polynomial curves, some don't
« — complexity shifts from implementations to proofs
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Corner cutting in equations

* New points are linear combinations of old ones

 Different treatment for odd-numbered and even
numbered points.

k—1
P;

k k=1 k—1y
poi = (3p; +piq)/4
~ k=1 o k—14
péi—l = (p; "+ 3pi1)/4



Subdivision for B-splines

« Control vertices of refined spline are linear
combinations of the coarse spline
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Subdivision rules as a mask

| 6 |
even @ O @
B-spline 4 4
odd @ ¢
3 |
even | ®
corner-cutting | 3
odd @ ®



Cubic B-Spline

4 4

8 3

oO—0O—=0 O O O
odd even

[Stanford C5468 Fall 2010 slides]



e Questions?



From curves to surfaces

» So far have discussed spline curves in 2D

» this already provides of the mathematical
machinery for several ways of building curved
surfaces

» Building surfaces from 2D curves
o extrusions and surfaces of revolution

 Building surfaces from 2D and 3D curves
* generalized swept surfaces

* Building surfaces from spline patches
 generalizing spline curves to spline patches

 Also to think about: generating triangles



Sweeping

» Surface defined by a cross section moving

along a spline

« Simple version: a sing
a single 2D curve for t
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Sweeping

» General swept surfaces
* varying radius
* varying cross-section
 curved axis

Vﬂ

profila.crv

[Snyder 1992]




From curves to surface patches

* Curve was sum of weighted 1D basis
functions

» Surface is sum of weighted 2D basis
functions

» construct them as separable products of 1D
functions.

* choice of different splines
* spline type
 order
* closed/open (B-spline)



Product construction




Spline Surface

* We can define a surface as the tensor product
of two curves

* Bilinear Surface patch
°L(P1,P2,a) — (1_6()P1 +aP2
° Q(S, t) — L(L(Pl'PZJ t),L(P3,P4_, t)'S)
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* 4 points, cross product of two linear segments

Bilinear patch
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Biquadratic Bézier patch

» Cross product of quadratic Bézier curves
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[Hearn & Baker]



Bicubic Bezier patch

 Cross product of two cubic Bezier segments
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Bicubic Bezier patch

Notation: CB( Py, 5, P35, Py, a) is Bezier curve
with confrol points P evaluated at o

Define “Tensor-product” Bézier surface

Q(s.t) = CB({  CB(Py. Py, P, Pan. 1),
CB{F, Fiy, Pra, Pia.t),
CB( Fag, Py, Foa, P, 1),
CB( Py, Fy1, Pia, Py, t),

£y




Cylindrical B-spline surfaces

» Cross product of closed and open cubic B-
splines

[Rogers]



Subdivision surface




Subdivision surface

« Subdivision surfaces
« based on polygon meshes (quads or triangles)
* rules for subdividing surface by adding new vertices




Generalizing from curves to
surfaces

» Two parts to subdivision process

* Subdividing the mesh (computing new topology)
* For curves: replace every segment with two segments
» For surfaces: replace every face with some new faces

 Positioning the vertices (computing new geometry)

» For curves: two rules (one for odd vertices, one for even)

* New vertex’s position is a weighted average of positions of
old vertices that are nearby along the sequence

 For surfaces: two kinds of rules (still called odd and

even)

* New vertex’s position is a weighted average of positions of
old vertices that are nearby in the mesh



Subdivision Surface

« Chaikin’s Algorithm




Subdivision of meshes

e Quadrilaterals
 Catmull-Clark 1978
* Triangles
* Loop 1987

———

Face split for guads
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[Schréder & Zorin SIGGRAPH 2000 course 23]



Catmull-Clark regular rules
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Loop regular rules
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How about the boundary?

* Treat it with other rules
* Crease rule

noth lunit syefa e Hoppe]



Catmull-Clark with creases

[DeRose et al SIGGRAPH |99H]




Subdivision vs Splines

* In regular regions, behavior is identical

At extraordinary vertices, achieve C1
* near extraordinary, different from splines

* Linear everywhere

* mapping from parameter space to 3D is a linear
combination of the control points



OpenGL support

* Legacy
« Evaluators

 Modern
 DIY
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e Questions?



