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Motivation: smoothness

• In many applications we need smooth shapes
• without discontinuities

• So far we can make things with corners



Limitations of Polygonal Meshes

• Planar facets

• Fixed resolution

• Deformation is difficult 

• Hard for parameterization



Stanford Bunny (1k triangles)

• Normal Smooth



Problem

• Still low resolution especially at silhouettes

• So using more triangles

• 10K triangles or more? Not always good enough



Non-Polygonal Modeling



Curves

• Draw using discretization

• Can it be modeled as line segments?



Spline curve

• Smooth curve defined by some control points

• Moving the control points changes the curve

• Interpolation vs approximation



Interpolation Splines

• Imaging an elastic bar made of wood, bamboo 
or metal



Smoothness and Control

• Physically, curvature minimization based on 
fixed pins

• Mathematically, choosing low-order 
polynomials as smooth functions and passing 
through control points



Interpolation Curves

• Curve is constrained to pass through all control 
points

• Given points P0, P1, ... , Pn, find lowest degree 
polynomial which passes through the points

𝑄 𝑡 = 𝐺𝐵𝑇 𝑡 = 𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑦 𝐺 ⋅ 𝑆𝑝𝑙𝑖𝑛𝑒 𝐵𝑎𝑠𝑖𝑠 𝐵 ⋅ 𝑃𝑜𝑤𝑒𝑟 𝐵𝑎𝑠𝑖𝑠 𝑇(𝑡)



Linear Interpolation

• Simplest "curve" between two points

𝑄 𝑡 = 𝐺𝐵𝑇 𝑡 = 𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑦 𝐺 ⋅ 𝑆𝑝𝑙𝑖𝑛𝑒 𝐵𝑎𝑠𝑖𝑠 𝐵 ⋅ 𝑃𝑜𝑤𝑒𝑟 𝐵𝑎𝑠𝑖𝑠 𝑇(𝑡)



Hermite spline curve

• Piecewise cubic

• Constraints: endpoints and tangents



Hermite spline curve

• Solve constraints to find coefficients



Hermite spline curve
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Hermite spline curve
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Hermite spline curve
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The hermite basis functions



Interpolation vs Approximation

• Interpolation Curve –over constrained →lots of 
(undesirable?) oscillations

• Approximation Curve –more reasonable?



Hermite to Bézier

• Mixture of points and vectors is awkward

• Specify tangents as differences of points



Cubic Bézier Curve

• Control points

• Curve passes through first & last control point

• Curve is tangent at P1 to (P1-P2) and at P4 to (P4-P3)



Hermite to Bézier
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Hermite to Bézier

• 𝑞0 𝑞1𝑞2 𝑞3
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Bézier matrix

• 𝑄 𝑡 = 𝑞0 𝑞1 𝑞2 𝑞3
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• These are defined as Bernstein polynomials

𝐵𝑖
𝑛 𝑡 =

𝑛!

𝑖! 𝑛 − 𝑖 !
𝑡𝑖 1 − 𝑡 𝑛−𝑖 , 0 ≤ 𝑖 ≤ 𝑛

𝑄 𝑡 = 𝐺𝐵𝑇 𝑡 = 𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑦 𝐺 ⋅ 𝑆𝑝𝑙𝑖𝑛𝑒 𝐵𝑎𝑠𝑖𝑠 𝐵 ⋅ 𝑃𝑜𝑤𝑒𝑟 𝐵𝑎𝑠𝑖𝑠 𝑇(𝑡)



Cubic Bézier Curves



• Questions?



Another way to Bézier segments

• Start from Q(t) = p0



Another way to Bézier segments

• A piecewise linear spline segment
• two control points per segment

• blend them with weights α and β = 1 – α



Another way to Bézier segments

• A linear blend of two piecewise linear 
segments

• three control points now

• interpolate on both segments using α and β

• blend the results with the same weights

• makes a quadratic spline segment
• finally, a curve!





Another way to Bézier segments

• Cubic segment: blend of two quadratic 
segments

• four control points now (overlapping sets of 3)

• interpolate on each quadratic using α and β

• blend the results with the same weights

• makes a cubic spline segment
• this is the familiar one for graphics—but you can 

keep going





de Casteljau's algorithm 

• A recurrence for computing points on Bézier
spline segments





Continuity 

• C0 continuous

• curve/surface has no breaks/gaps/holes

• "watertight“

• C1 continuous

• curve/surface derivative is continuous

• "looks smooth, no facets“

• C2 continuous

• curve/surface 2nd derivative is continuous

• Actually important for shading



Connecting Cubic Bézier
Curves

• How can we guarantee C0 continuity (no gaps)?

• How can we guarantee C1 continuity (tangent 
vectors match)?

• Asymmetric: Curve goes through some control 
points but misses others



Properties of Bézier Splines

• Convex hull property

• Continuity

• Affine invariance



BSpline

• ≥4 control points, Knot points

• Locally cubic (Bézier), Low order in general 

• Curve is not constrained to pass through any control 
points 



BSplines



BSpline vs Bézier

https://pages.mtu.edu/~shene/COURSES/cs3621/NOTES/

https://pages.mtu.edu/~shene/COURSES/cs3621/NOTES/


Bézier vs BSpline

• Relationship to the control points is different



NURBS

• BSpline: uniform cubic Bspline

• Restriction of Polynomials

• NURBS: Non-Uniform Rational BSpline
• non-uniform = different spacing between 

the blending functions,

• rational = quotients of polynomials



• Questions?



Subdivision Curve

• Chaikin’s algorithm
• 1 quarter 3 quarter algorithm



Subdivision curves

• Curve is defined as the limit of a refinement 
process

• properties of curve depend on the rules

• – some rules make polynomial curves, some don’t

• – complexity shifts from implementations to proofs



Corner cutting in equations

• New points are linear combinations of old ones

• Different treatment for odd-numbered and even 
numbered points.



Subdivision for B-splines

• Control vertices of refined spline are linear 
combinations of the coarse spline



Subdivision rules as a mask





• Questions?



From curves to surfaces

• So far have discussed spline curves in 2D
• this already provides of the mathematical 

machinery for several ways of building curved 
surfaces

• Building surfaces from 2D curves
• extrusions and surfaces of revolution

• Building surfaces from 2D and 3D curves
• generalized swept surfaces

• Building surfaces from spline patches
• generalizing spline curves to spline patches

• Also to think about: generating triangles



Sweeping

• Surface defined by a cross section moving 
along a spline

• Simple version: a single 3D curve for spine and 
a single 2D curve for the cross section



Sweeping

• General swept surfaces
• varying radius

• varying cross-section

• curved axis



From curves to surface patches

• Curve was sum of weighted 1D basis 
functions

• Surface is sum of weighted 2D basis 
functions

• construct them as separable products of 1D 
functions.

• choice of different splines
• spline type

• order

• closed/open (B-spline)



Product construction



Spline Surface

• We can define a surface as the tensor product 
of two curves

• Bilinear Surface patch

• 𝐿 𝑃1, 𝑃2, 𝛼 = 1 − 𝛼 𝑃1 + 𝛼𝑃2
• 𝑄 𝑠, 𝑡 = 𝐿(𝐿 𝑃1, 𝑃2, 𝑡 , 𝐿 𝑃3, 𝑃4, 𝑡 , 𝑠)



Bilinear patch

• 4 points, cross product of two linear segments



Biquadratic Bézier patch

• Cross product of quadratic Bézier curves

[Hearn & Baker]



Bicubic Bézier patch

• Cross product of two cubic Bézier segments

[Foley et al.]

[Hearn & Baker]



Bicubic Bézier patch



Cylindrical B-spline surfaces

• Cross product of closed and open cubic B-
splines



Subdivision surface



Subdivision surface

• Subdivision surfaces
• based on polygon meshes (quads or triangles)

• rules for subdividing surface by adding new vertices



Generalizing from curves to 
surfaces
• Two parts to subdivision process

• Subdividing the mesh (computing new topology)
• For curves: replace every segment with two segments

• For surfaces: replace every face with some new faces

• Positioning the vertices (computing new geometry)
• For curves: two rules (one for odd vertices, one for even)

• New vertex’s position is a weighted average of positions of 
old vertices that are nearby along the sequence

• For surfaces: two kinds of rules (still called odd and 
even)

• New vertex’s position is a weighted average of positions of 
old vertices that are nearby in the mesh



Subdivision Surface

• Chaikin’s Algorithm



Subdivision of meshes

• Quadrilaterals
• Catmull-Clark 1978

• Triangles
• Loop 1987



Catmull-Clark regular rules



Loop regular rules



How about the boundary?

• Treat it with other rules

• Crease rule

[Hugues Hoppe]



Catmull-Clark with creases



Subdivision vs Splines

• In regular regions, behavior is identical

• At extraordinary vertices, achieve C1
• near extraordinary, different from splines

• Linear everywhere
• mapping from parameter space to 3D is a linear 

combination of the control points



OpenGL support

• Legacy
• Evaluators

• Modern
• DIY
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• Questions?


