CS100433
2D and 3D Viewing

Jungiao Zhao X & Uif

Department of Computer Science and Technology
College of Electronics and Information Engineering

Tongji University

How to animate a bicycle?

- | >

S E

Viewing Pipeline

Model Coordinates
object space

iewing Coordinates Window Coordinates
camera space

m

modeling t c?merat_ projection viewport
transformation ranggsrmaton transformation transformation
S\ A
A Y

world space canonical

World Coordinates view volume
Normalized Device

Coordinates (NDC)

Recall Transformations

Projective

Affine

Similitudes

Rigid / Euclidean

Scaling

[dentity

Translation Isotropic Scaling Reflection

Rotation

Shear

Perspective

Viewing implementation

* Transform into camera coordinates
* Perform projection into view volume

* Clip geometry outside the clipping
volume

* Project into screen coordinates

 Remove hidden surfaces (next lecture)

The Default Viewing

e Convention - the “camera” is located at origin and
points in the negative z direction

* The default view volume is a cube with sides of
length 2 centered at the origin

» Default projection matrix is an identity

* NDC

- clipped out

‘2/05 A

1
P x

#/ | Projection plane
Z

glm::LookAt(eye, center, up)

* creates a viewing matrix derived from an eye point, a
reference point indicating the center of the scene, and
an UP vector, usually (0, 1, 0)

* Let
* f =normalized(eye — center)
cu=UPXf
* up = normalized(f X u)

cF = u up f eye
00 0 1

e T =F~1

* Note the camera is looking at the negative z direction in
camera space

Moving the Camera Frame

* |f we want to visualize object with both positive and
negative z values we can either
* Move the camera in the positive z direction
* Translate the camera frame
* Move the objects in the negative z direction
* Translate the world frame

e So called ModelView matrix

* We can move the camera/model to any desired
position by a sequence of rotations and translations

Projection Transformation

» After the viewing transformation everything are
oriented as we would like them to appear in the
final image

* All that remains is to project out the depth z:
convert the 3D coordinates to 2D

* Orthographic
* Perspective

Mathematics of Projection

* Always work in eye space

* Orthographic projection

* a simple projection: j
* In practice, we can di

x] 1 0 0 0
Jyl_fo 1 0 o
0|0 0o 0 0
1l lo o o 1

ust toss out z

rectly setz=0
-

y
Z

11

* Perspective case: sca

e diminishes with z

Orthogonal Projection

glm: :Ortho(left,right,bottom, top,near, far)

/Trighh fop, -Far]
=far

Z

- "o

“WView volume

Z =feqar

A

-

\
[ia-l#, bottom, -near]

Z

near and £far measured distance from eye

Normalization

e Rather than derive a different projection matrix for
each type of projection, we can convert all
projections to orthogonal projections with the
default view volume

* This strategy allows us to use standard
transformations in the pipeline and makes for
efficient clipping

Orthogonal Normalization

glm: :Ortho(left,right,bottom, top, nea
r, far)

(right,top,-far)
(1,1, 1)

— =

@
(left, bottom,-near) (-1, -1, -1)

Orthogonal Matrix

* Two steps
* Move center to origin

T(-(left+right)/2, -(bottom+top)/2, (near+far)/2))

* Scale to have sides of length 2

S(2/(right-left), 2/(top-bottom), 2/(-far —(- near))

2 0
right — left
0 2
P=ST-= top — bottom
0 0
| 0 0

0

0
2

near — far
0

right + left |

right — lef't
top + bottom

top — bottom
far + near

far — near

1

Final Projection

e Setz=0

* Equivalent to the homogeneous coordinate
transformation

1 0 0 O
O 1 0 O
Morth=0000
00 0 1

* Hence, general orthogonal projection in 4D is
P=M,_,ST

ort

e Questions?

Perspective Projection

1

Convergence
Point

Simple Perspective

* Center of projection at the origin
* Projection planez=d, d <0

Y
A

x, y, z]
//'

-

X Yoo Z,)
- X

Perspective Equations

Consider top and side views

(x, z))‘/
(x ,d) ly, z)
e Z = d (Yp:d) '
- X 2 -
z=d
Y
z
X 4
X, = = z,=d

> 2/ d Yp z/d P

Homogeneous Coordinate Form

x-d/z] [x71 [1 0
y-d/z| _| Yy |_|0 1
d z 0 0
1 | 1z/d] [0 o

Uomogenize

1

o O

R

d

-

0
0
O_

o NS X

Perspective Division

e w# 1, so we must divide by w to return from
homogeneous coordinates

* This perspective division yields

X Y
X. = = d
P2/ d & z/d “p

the desired perspective equations

Alternate Perspective Projection

e Center of projectionatz=d
* Projection planez=0

(Xp | x-d/(z+d)] I X
N |y-d/(z+d)| _ Y _
Zp| 0 B 0 B
1] 1 1 1 1z+d)/d
1 0 0 O 7rx
0 1 0 0]y
0O 0 O O0]lz
o 0o Y; 1]L1

To the Limit, asd — oo

* The perspective projection matrix is simply an
orthographic projection

O O Rk O
~NOoO O O
o O O
o OO O

1

oo O

-

0
0
1_

cCo o R
cC o0 -

e Questions?

Normalize Perspective Transformation

(h, t n

i, b, n

(1,-1,-1})

http://www.songho.ca/opengl/gl_projectionmatrix.html

Normalize Perspective Transformation

.xp—

oyp

+Z

http://www.songho.ca/opengl/gl_projectionmatrix.html

+Y

(0.0,0)

-

-~
'
"
o~
o
-~
=

,.,-f"'a-f (Xe, Ve, Ze)
L

-

{xp. - %FE 1 _n}

Normalize Perspective Transformation

* Normalize x,, and y, instead

e Using the same “trick” as we did for orthogonal
projection
° X, = i X, — T'_-I-l
n y_1 7P r—g
ey =2 .y _ b
In =Y T o

* Substitute x, and y, into the equations

2n r+l
'xn=(r__l'xe+r__l'ze)/_ze

2n t+b
*VYn = (E'Ye +E'Ze)/_ze

http://www.songho.ca/opengl/gl_projectionmatrix.html

Normalize Perspective Transformation

2n r+1
Xe r—1 0 r—1 O\ Xe
Ve _ 2n t+b Ve
) Z. | 0 t—b t-b 0 Zg
? ? ? ?
W 1
’ \o 0 -1 0/
Xn Xc /W
o Yn — yC/WC
Zn Zc/Wc
1 1

http://www.songho.ca/opengl/gl_projectionmatrix.html

Normalize Perspective Transformation

2n r+l
x\ [0 o 0\ /x,
. Ve _ 0 2n t+b 0 Ve
Z t—b t-b Zea
0 0O -1 O
*72.=A-z,+B
Zc
[Zn _—Z6

e How to solve A and B?

http://www.songho.ca/opengl/gl_projectionmatrix.html

Normalize Perspective Transformation

Zc

[J Zn —_— _Ze
* (Ze) Zn)i (—n, —1), (=, 1)

e p=_ 1T

= n

° Bz_zf_n

f—n

http://www.songho.ca/opengl/gl_projectionmatrix.html

Normalize Perspective Transformation

2n r+l1

X E 0 E O\ X
Ye 0O — — 0

0 0
P A

P= IVIorthIVI

pers

http://www.songho.ca/opengl/gl_projectionmatrix.html

 Questions?

Clipping

-—>-—

4D Clip space

- 3D - 2D

4D — 3D

Clipping-When?

e Before projection transform
e Use the equation of 4 lines (2D), 6 planes (3D)
* Natural

* In homogenous clip space
* 4D space
* In canonical space, independent of camera and viewport
* The Simplest to implement, Why?

* In NDC, after perspective division
* Problematic!

Normalize Perspective Transformation

2n r+l
X T_—l 0 T_—l 0 \ Xo
2n t+b
N PG I S | G
“ 0 o It _zm |\ Z
We \ f-n f—n/ 1
0 0 —1 0
Xn xc/Wc
Y w
. Zn — Ve/We W= Z,
n Zc/Wc

http://www.songho.ca/opengl/gl_projectionmatrix.html

What if the z is < eye,

image plane

Clipping-Why?

* Avoid degeneracies

* Do not draw things behind the
eye
* Avoid division by O
* Efficiency
* Do not waste time on objects
outside the boundary
e Other applications
* CSG Boolean operations

 Hidden-surface removal
 Shadows

\

»-

2

direction

image plane

A

Z axis

Clipping

e 2D against clipping window
* 3D against clipping volume

e Easy for line segments polygons

e Hard for curves and text

* Convert to lines and polygons first

P o

¢

D)

A

B

/ \J
-
oy

C

Clipping Points in 2D

(X, V1)

(x, v)) ®

Clipping 2D Line Segments

* Brute force approach: compute intersections with
all sides of clipping window

* |Inefficient: one division per intersection

/H /F D

G/A//B E/ /

Cohen-Sutherland Algorithm

* |dea: eliminate as many cases as possible without
computing intersections

e Start with four lines that determine the sides of the
clipping window

y = ymax O

Y= ymin

The Cases

e Case 1: both endpoints of line segment inside all four
lines
* Draw (accept) line segment as is

y= ymax @)

@)

yzymin
e Case 2: both endpoints outside all lines and on same
side of a line
e Discard (reject) the line segment

The Cases

e Case 3: One endpoint inside, one outside
* Must do at least one intersection

e Case 4: Both outside, but on different side of a line

* May have part inside
e Must do at least one intersection

o

@) y= ymax
o

— @) @) -
X= Xmin X= Xmax

Defining Outcodes

* For each endpoint, define an outcode

bob,b,b;

bo=1ify>y, ., 0otherwise
b,=1ify<y,.., 0otherwise
b,=1
b;=1

if x> X 0 otherwise
if x<x_. 0otherwise

2 max’

3 min?

1001 | 1000 | 1010

0001 | 0000 | 0010

0101 | 0100 | O110

X = Xmin X = chl

e OQutcodes divide space into 9 regions

 Computation of outcode requires at most 4

subtractions

X

4
Y

ymCIX

ymin

Using Outcodes

e Consider the 5 cases below

e AB: outcode(A) = outcode(B) =0
* Accept line segment

1001 H 1000 1010
e J
7
B D
0001 ;- 0 0
A/oeo’ o /016
F

0101

0100

Using Outcodes

e CD: outcode (C) =0, outcode(D) #0
* Compute intersection

 Location of 1 in outcode(D) determines which edge to
intersect with

* Note if there were a segment from A to a point in a region
with 2 ones in outcode, we might have to do fwo

intersections
1001 4 1000 1010

/’// J

0101 0100 0110

Using Outcodes

e EF: outcode(E) logically ANDed with outcode(F)
(bitwise) =0
* Both outcodes have a 1 bit in the same place

* Line segment is outside of corresponding side of clipping
window

* reject 1001 4 1000 1010

GJ/’///// ,//J

B

/ /

0001 1 A/ooeo/ & /wxﬁ
E

0101 0100 0110

Using Outcodes

 GH and lJ: same outcodes, neither zero but logical AND
yields zero

* Shorten line segment by intersecting with one of sides of
window

 Compute outcode of intersection (new endpoint of

shortened line segment)

. 1001 1000 1010
* Reexecute algorithm | Z

0101 0100 0110

Using Outcodes

* It works for arbitrary primitives
* And for arbitrary dimensions
* 1001 & 1000 & 1010 & 1010 & 1000 & 1000 = 1000

Reject!
1oo</m/%m
v
0001 0000 0010

0101 0100 0110

Efficiency

* In many applications, the clipping window is small
relative to the size of the entire data base

* Most line segments are outside one or more side of the
window and can be eliminated based on their outcodes

* Inefficiency when code has to be reexecuted for
line segments that must be shortened in more than
one step

Cohen Sutherland in 3D

e Use 6-bit outcodes
* When needed, clip line segment against planes

(le)’2: Z‘2)

%

4
A

T (qux' qux' qux)

(x], Y10 Z N ——

#

)/

P
W
(xmin' Ymint Zmin

X

e Questions?

Clipping Polygon

* Clipping polygon is symmetric

Clipping Polygon in 2D

* Clipping polygon is complex

D NS

Polygon Clipping

* Not as simple as line segment clipping
* Clipping a line segment yields at most one line segment
* Clipping a polygon can yield multiple polygons

A /X
ZL l

* However, clipping a convex polygon can yield at
most one other polygon

The naive method

* N*M intersections
* Must link all the segments
* Not efficient and even not easy

Weiler-Atherton Clipping

* Strategy: “Walk” polygon/window boundary
* Polygons are oriented (CCW)

Weiler-Atherton Clipping

* Compute intersection points

Weiler-Atherton Clipping

* Compute intersection points

* Mark points where polygons enters clipping
window (green here)

Weiler-Atherton Clipping

* While there is still an unprocessed entering
Intersection

* Walk” polygon/window boundary

Walking rules

* Qut-to-in point:
e Record clipped point
* Follow polygon boundary (ccw)

* In-to-out point:
e Record clipped point
* Follow window boundary (ccw)

Walking rules

* Qut-to-in point:
e Record clipped point
* Follow polygon boundary (ccw)

* In-to-out point:
e Record clipped point
* Follow window boundary (ccw)

Walking rules

* Qut-to-in point:
e Record clipped point
* Follow polygon boundary (ccw)

* In-to-out point:
e Record clipped point
* Follow window boundary (ccw)

Walking rules

* Qut-to-in point:
e Record clipped point
* Follow polygon boundary (ccw)

* In-to-out point:
e Record clipped point
* Follow window boundary (ccw)

Walking rules

* While there is still an unprocessed entering
Intersection

* Walk” polygon/window boundary

Walking rules

* While there is still an unprocessed entering
Intersection

* Walk” polygon/window boundary

Walking rules

* While there is still an unprocessed entering
Intersection

* Walk” polygon/window boundary

Walking rules

* While there is still an unprocessed entering
Intersection

* Walk” polygon/window boundary

* Importance of good adjacency data structure (here
simply list of oriented edges)

Robustness, precision, degeneracies

 What if a vertex is on the boundary?
 What happens if it is “almost” on the boundary?

Problem with floating point precision

e Other ways?

Tessellation and Convexity

* Another strategy is to replace nonconvex (concave)
polygons with a set of triangular polygons (a
tessellation)

* Also makes fill easier

Clipping Convex Polygon

Sutherland-Hodgman Polygon
Clipping

* Clipping against each side of window is
independent of other sides
e Can use four independent clippers in a pipeline

. (x],y])

(X5: Y5)

(X2: YQ)

(X],)/1) (X3: y3) (Xgr Y3) (X3,)/3) (X3, Y3)

(le YQ) (XQI)/2) (X5, Y5) . (X5,)/5) (X41 Y4)
Top ———® Botom —————®= Right ————®» Left

Sutherland-Hodgman Polygon
Clipping

——————————————————

outside ! inside outside l'inside

I

| |

I I

| |
/Vz :
v, :

I

V, :

.

out ->in in ->in
Output: V, V, Output: V,

Sutherland-Hodgman Polygon

Clipping

—————————

outside : inside
I
I
; \Y;
2

I ?
|V1

V, !

in ->out
Output: V,

outside

—————————

inside

out-> out
Output: None

Sutherland-Hodgman Polygon

Clipping

inside

outside

Right clipper:

(1, 2): (in-in) -> {2}

(2, 3): (in - out) -> {3’}
(3, 1): (out - in) -> {3”,1}

Pipeline Clipping of Polygons

Y

4,.

Top
clip

A

- AR

4,

Left
clip

Bottom
clip

- M

Right
clip

* Three dimensions: add front and back clippers

 Strategy used in SGI Geometry Engine

* Small increase in latency

e Questions?

References

* Ed Angel, CS/EECE 433 Computer Graphics,
University of New Mexico

» Steve Marschner, CS4620/5620 Computer Graphics,
Cornell

* Tom Thorne, COMPUTER GRAPHICS, The University
of Edinburgh

* Elif Tosun, Computer Graphics, The University of
New York

* http://www.songho.ca/opengl/gl projectionmatrix.
html

