
CS100433

2D and 3D Viewing
Junqiao Zhao 赵君峤

Department of Computer Science and Technology

College of Electronics and Information Engineering

Tongji University

How to animate a bicycle?

Viewing Pipeline
Model Coordinates

World Coordinates

Viewing Coordinates

Normalized Device
Coordinates (NDC)

Window Coordinates

Recall Transformations

Viewing implementation

• Transform into camera coordinates

•Perform projection into view volume

•Clip geometry outside the clipping
volume

•Project into screen coordinates

•Remove hidden surfaces (next lecture)

The Default Viewing

• Convention - the “camera” is located at origin and
points in the negative z direction

• The default view volume is a cube with sides of
length 2 centered at the origin
• Default projection matrix is an identity

• NDC
clipped out

2

glm::LookAt(eye, center, up)

• creates a viewing matrix derived from an eye point, a
reference point indicating the center of the scene, and
an UP vector, usually (0, 1, 0)

• Let
• 𝑓 = 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑒𝑦𝑒 − 𝑐𝑒𝑛𝑡𝑒𝑟

• 𝑢 = 𝑈𝑃 × 𝑓
• 𝑢𝑝 = 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑓 × 𝑢

• 𝐹 =
𝑢 𝑢𝑝
0 0

𝑓 𝑒𝑦𝑒
0 1

• 𝑇 = 𝐹−1

• Note the camera is looking at the negative z direction in
camera space

Moving the Camera Frame

• If we want to visualize object with both positive and
negative z values we can either
• Move the camera in the positive z direction

• Translate the camera frame

• Move the objects in the negative z direction

• Translate the world frame

• So called ModelView matrix

• We can move the camera/model to any desired
position by a sequence of rotations and translations

Projection Transformation

• After the viewing transformation everything are
oriented as we would like them to appear in the
final image

• All that remains is to project out the depth z:
convert the 3D coordinates to 2D
• Orthographic

• Perspective

Mathematics of Projection

• Always work in eye space

• Orthographic projection
• a simple projection: just toss out z

• In practice, we can directly set z = 0

•

𝑥
𝑦
0
1

=

1 0
0 1

0 0
0 0

0 0
0 0

0 0
0 1

𝑥
𝑦
𝑧
1

• Perspective case: scale diminishes with z

Orthogonal Projection

glm::Ortho(left,right,bottom,top,near,far)

near and farmeasured distance from eye

Normalization

• Rather than derive a different projection matrix for
each type of projection, we can convert all
projections to orthogonal projections with the
default view volume

• This strategy allows us to use standard
transformations in the pipeline and makes for
efficient clipping

Orthogonal Normalization

glm::Ortho(left,right,bottom,top,nea

r,far)

(-1, -1, -1)

(1, 1, 1)

Orthogonal Matrix

• Two steps
• Move center to origin

T(-(left+right)/2, -(bottom+top)/2, (near+far)/2))

• Scale to have sides of length 2

S(2/(right-left), 2/(top-bottom), 2/(-far –(- near))

P = ST =



























−

+
−

−

−

+
−

−

−

+
−

−

1000

2
00

0
2

0

00
2

nearfar

nearfar

farnear

bottomtop

bottomtop

bottomtop

leftright

leftright

leftright

Final Projection

• Set z =0

• Equivalent to the homogeneous coordinate
transformation

• Hence, general orthogonal projection in 4D is



















1000

0000

0010

0001

Morth =

P = MorthST

• Questions?

Perspective Projection

P1

P2

P1

P2

P1
’

P2
’

P1
’

P2
’

Convergence
Point

Simple Perspective

• Center of projection at the origin

• Projection plane z = d, d < 0

Perspective Equations

Consider top and side views

xp =

dz

x

/

dz

x

/
yp =

dz

y

/
zp = d

Homogeneous Coordinate Form

•

𝑥𝑝
𝑦𝑝
𝑧𝑝
1

=

𝑥 ⋅ 𝑑/𝑧
𝑦 ⋅ 𝑑/𝑧

𝑑
1

=

𝑥
𝑦
𝑧

𝑧/𝑑

=

1 0
0 1

0 0
0 0

0 0
0 0

1 0
Τ1 𝑑 0

𝑥
𝑦
𝑧
1

homogenize

Perspective Division

• w  1, so we must divide by w to return from
homogeneous coordinates

• This perspective division yields

the desired perspective equations

xp =
dz

x

/
yp =

dz

y

/
zp = d

Alternate Perspective Projection

• Center of projection at z = d

• Projection plane z = 0

•

𝑥𝑝
𝑦𝑝
𝑧𝑝
1

=

𝑥 ⋅ 𝑑/(𝑧 + 𝑑)
𝑦 ⋅ 𝑑/(𝑧 + 𝑑)

0
1

=

𝑥
𝑦
0

(𝑧 + 𝑑)/𝑑

=

1 0
0 1

0 0
0 0

0 0
0 0

0 0
Τ1 𝑑 1

𝑥
𝑦
𝑧
1

To the Limit, as 𝑑 → ∞

• The perspective projection matrix is simply an
orthographic projection

•

1 0
0 1

0 0
0 0

0 0
0 0

0 0
Τ1 𝑑 1

→

1 0
0 1

0 0
0 0

0 0
0 0

0 0
0 1

• Questions?

Normalize Perspective Transformation

http://www.songho.ca/opengl/gl_projectionmatrix.html

Normalize Perspective Transformation

• 𝑥𝑝 = −
𝑛

𝑧𝑒
𝑥𝑒

• 𝑦𝑝 = −
𝑛

𝑧𝑒
𝑦𝑒

http://www.songho.ca/opengl/gl_projectionmatrix.html

Normalize Perspective Transformation

• Normalize 𝑥𝑝 𝑎𝑛𝑑 𝑦𝑝 instead

• Using the same “trick” as we did for orthogonal
projection

• 𝑥𝑛 =
2

𝑟−𝑙
⋅ 𝑥𝑝 −

𝑟+𝑙

𝑟−𝑙

• 𝑦𝑛 =
2

𝑡−𝑏
⋅ y𝑝 −

𝑡+𝑏

𝑡−𝑏

• Substitute 𝑥𝑒 𝑎𝑛𝑑 𝑦𝑒 into the equations

• 𝑥𝑛 = (
2𝑛

𝑟−𝑙
⋅ 𝑥𝑒 +

𝑟+𝑙

𝑟−𝑙
⋅ 𝑧𝑒)/−𝑧𝑒

• 𝑦𝑛 = (
2𝑛

𝑡−𝑏
⋅ y𝑒 +

𝑡+𝑏

𝑡−𝑏
⋅ 𝑧𝑒)/−𝑧𝑒

http://www.songho.ca/opengl/gl_projectionmatrix.html

Normalize Perspective Transformation

•

𝑥𝑐
𝑦𝑐
𝑧𝑐
𝑤𝑐

=

2𝑛

𝑟−𝑙
0

𝑟+𝑙

𝑟−𝑙
0

0
2𝑛

𝑡−𝑏

𝑡+𝑏

𝑡−𝑏
0

? ? ? ?
0 0 −1 0

𝑥𝑒
𝑦e
𝑧e
1

•

𝑥𝑛
𝑦𝑛
𝑧𝑛
1

=

𝑥𝑐/𝑤𝑐

𝑦𝑐/𝑤𝑐

𝑧𝑐/𝑤𝑐

1
http://www.songho.ca/opengl/gl_projectionmatrix.html

Normalize Perspective Transformation

•

𝑥𝑐
𝑦𝑐
𝑧𝑐
𝑤𝑐

=

2𝑛

𝑟−𝑙
0

𝑟+𝑙

𝑟−𝑙
0

0
2𝑛

𝑡−𝑏

𝑡+𝑏

𝑡−𝑏
0

0 0 𝐴 𝐵
0 0 −1 0

𝑥𝑒
𝑦e
𝑧e
1

• zc = 𝐴 ⋅ 𝑧𝑒 + 𝐵

• z𝑛 =
𝑧𝑐

−𝑧𝑒

• How to solve A and B?

http://www.songho.ca/opengl/gl_projectionmatrix.html

Normalize Perspective Transformation

• zc = 𝐴 ⋅ 𝑧𝑒 + 𝐵

• z𝑛 =
𝑧𝑐

−𝑧𝑒

• (z𝑒 , 𝑧𝑛): −n,−1 , −f, 1

• A=−
𝑓+𝑛

𝑓−𝑛

• B=−
2𝑓𝑛

𝑓−𝑛

http://www.songho.ca/opengl/gl_projectionmatrix.html

Normalize Perspective Transformation

•

𝑥𝑐
𝑦𝑐
𝑧𝑐
𝑤𝑐

=

2𝑛

𝑟−𝑙
0

𝑟+𝑙

𝑟−𝑙
0

0
2𝑛

𝑡−𝑏

𝑡+𝑏

𝑡−𝑏
0

0 0 −
𝑓+𝑛

𝑓−𝑛
−

2𝑓𝑛

𝑓−𝑛

0 0 −1 0

𝑥𝑒
𝑦e
𝑧e
1

http://www.songho.ca/opengl/gl_projectionmatrix.html

P = MorthMpers

• Questions？

Clipping

Projection
transformation

perspective
division

Clipping

Normalized Device
coordinates

4D → 3D
3D → 2D

4D Clip space

projection

Clipping-When?

• Before projection transform
• Use the equation of 4 lines (2D), 6 planes (3D)

• Natural

• In homogenous clip space
• 4D space

• In canonical space, independent of camera and viewport

• The Simplest to implement, Why?

• In NDC, after perspective division
• Problematic!

Normalize Perspective Transformation

•

𝑥𝑐
𝑦𝑐
𝑧𝑐
𝑤𝑐

=

2𝑛

𝑟−𝑙
0

𝑟+𝑙

𝑟−𝑙
0

0
2𝑛

𝑡−𝑏

𝑡+𝑏

𝑡−𝑏
0

0 0 −
𝑓+𝑛

𝑓−𝑛
−

2𝑓𝑛

𝑓−𝑛

0 0 −1 0

𝑥𝑒
𝑦e
𝑧e
1

•

𝑥𝑛
𝑦𝑛
𝑧𝑛
𝑤𝑛

=

𝑥𝑐/𝑤𝑐

𝑦𝑐/𝑤𝑐

𝑧𝑐/𝑤𝑐

1

, 𝑤𝑐=- 𝑧𝑒

http://www.songho.ca/opengl/gl_projectionmatrix.html

What if the z is ≤ 𝑒𝑦𝑒𝑧

Clipping-Why?

• Avoid degeneracies
• Do not draw things behind the

eye
• Avoid division by 0

• Efficiency
• Do not waste time on objects

outside the boundary

• Other applications
• CSG Boolean operations
• Hidden-surface removal
• Shadows

Clipping

• 2D against clipping window

• 3D against clipping volume

• Easy for line segments polygons

• Hard for curves and text
• Convert to lines and polygons first

Clipping Points in 2D

(xh, yh)

(xl, yl)

Clipping 2D Line Segments

• Brute force approach: compute intersections with
all sides of clipping window
• Inefficient: one division per intersection

Cohen-Sutherland Algorithm

• Idea: eliminate as many cases as possible without
computing intersections

• Start with four lines that determine the sides of the
clipping window

x = xmaxx = xmin

y = ymax

y = ymin

The Cases

• Case 1: both endpoints of line segment inside all four
lines
• Draw (accept) line segment as is

• Case 2: both endpoints outside all lines and on same
side of a line
• Discard (reject) the line segment

x = xmaxx = xmin

y = ymax

y = ymin

The Cases

• Case 3: One endpoint inside, one outside
• Must do at least one intersection

• Case 4: Both outside, but on different side of a line
• May have part inside

• Must do at least one intersection

x = xmaxx = xmin

y = ymax

Defining Outcodes

• For each endpoint, define an outcode

• Outcodes divide space into 9 regions

• Computation of outcode requires at most 4
subtractions

b0b1b2b3

b0 = 1 if y > ymax, 0 otherwise
b1 = 1 if y < ymin, 0 otherwise
b2 = 1 if x > xmax, 0 otherwise
b3 = 1 if x < xmin, 0 otherwise

Using Outcodes

• Consider the 5 cases below

• AB: outcode(A) = outcode(B) = 0
• Accept line segment

1001 1000 1010

0001 0000 0010

0101 0100 0110

Using Outcodes

1001 1000 1010

0001 0000 0010

0101 0100 0110

• CD: outcode (C) = 0, outcode(D)  0
• Compute intersection

• Location of 1 in outcode(D) determines which edge to
intersect with

• Note if there were a segment from A to a point in a region
with 2 ones in outcode, we might have to do two
intersections

Using Outcodes

• EF: outcode(E) logically ANDed with outcode(F)
(bitwise)  0
• Both outcodes have a 1 bit in the same place

• Line segment is outside of corresponding side of clipping
window

• reject 1001 1000 1010

0001 0000 0010

0101 0100 0110

Using Outcodes

1001 1000 1010

0001 0000 0010

0101 0100 0110

• GH and IJ: same outcodes, neither zero but logical AND
yields zero

• Shorten line segment by intersecting with one of sides of
window

• Compute outcode of intersection (new endpoint of
shortened line segment)

• Reexecute algorithm

Using Outcodes

• It works for arbitrary primitives

• And for arbitrary dimensions

• 1001 & 1000 & 1010 & 1010 & 1000 & 1000 = 1000
Reject!

1001 1000 1010

0001 0000 0010

0101 0100 0110

Efficiency

• In many applications, the clipping window is small
relative to the size of the entire data base
• Most line segments are outside one or more side of the

window and can be eliminated based on their outcodes

• Inefficiency when code has to be reexecuted for
line segments that must be shortened in more than
one step

Cohen Sutherland in 3D

• Use 6-bit outcodes

• When needed, clip line segment against planes

• Questions?

Clipping Polygon

• Clipping polygon is symmetric

Clipping Polygon in 2D

• Clipping polygon is complex

Polygon Clipping

• Not as simple as line segment clipping
• Clipping a line segment yields at most one line segment

• Clipping a polygon can yield multiple polygons

• However, clipping a convex polygon can yield at
most one other polygon

The naive method

• N*M intersections

• Must link all the segments

• Not efficient and even not easy

Weiler-Atherton Clipping

• Strategy: “Walk” polygon/window boundary

• Polygons are oriented (CCW)

Weiler-Atherton Clipping

• Compute intersection points

Weiler-Atherton Clipping

• Compute intersection points

• Mark points where polygons enters clipping
window (green here)

Weiler-Atherton Clipping

• While there is still an unprocessed entering
intersection

• Walk” polygon/window boundary

Walking rules

• Out-to-in point:
• Record clipped point

• Follow polygon boundary (ccw)

• In-to-out point:
• Record clipped point

• Follow window boundary (ccw)

Walking rules

• Out-to-in point:
• Record clipped point

• Follow polygon boundary (ccw)

• In-to-out point:
• Record clipped point

• Follow window boundary (ccw)

Walking rules

• Out-to-in point:
• Record clipped point

• Follow polygon boundary (ccw)

• In-to-out point:
• Record clipped point

• Follow window boundary (ccw)

Walking rules

• Out-to-in point:
• Record clipped point

• Follow polygon boundary (ccw)

• In-to-out point:
• Record clipped point

• Follow window boundary (ccw)

Walking rules

• While there is still an unprocessed entering
intersection

• Walk” polygon/window boundary

Walking rules

• While there is still an unprocessed entering
intersection

• Walk” polygon/window boundary

Walking rules

• While there is still an unprocessed entering
intersection

• Walk” polygon/window boundary

Walking rules

• While there is still an unprocessed entering
intersection

• Walk” polygon/window boundary

• Importance of good adjacency data structure (here
simply list of oriented edges)

Robustness, precision, degeneracies

• What if a vertex is on the boundary?

• What happens if it is “almost” on the boundary?

Problem with floating point precision

• Other ways?

Tessellation and Convexity

• Another strategy is to replace nonconvex (concave)
polygons with a set of triangular polygons (a
tessellation)

• Also makes fill easier

Clipping Convex Polygon

1

2

3

1’

2’ 2”

3’

3”

1” 1’

2’ 2”

3’

3”

1”

Sutherland-Hodgman Polygon
Clipping
• Clipping against each side of window is

independent of other sides
• Can use four independent clippers in a pipeline

Sutherland-Hodgman Polygon
Clipping

V1

V1
’

V2

V1

V2

insideoutside insideoutside

out -> in
Output: V1

’, V2

in -> in
Output: V2

Sutherland-Hodgman Polygon
Clipping

V1

V1
’

V2

V1

V2

insideoutside insideoutside

in -> out
Output: V1

’

out-> out
Output: None

Sutherland-Hodgman Polygon
Clipping

1

2

3

1’

2’ 2”

3’

3”

1”
Right clipper:
(1, 2): (in - in) -> {2}
(2, 3): (in - out) -> {3’}
(3, 1): (out - in) -> {3”,1}

outsideinside

Pipeline Clipping of Polygons

• Three dimensions: add front and back clippers

• Strategy used in SGI Geometry Engine

• Small increase in latency

• Questions?

References

• Ed Angel, CS/EECE 433 Computer Graphics,
University of New Mexico

• Steve Marschner, CS4620/5620 Computer Graphics,
Cornell

• Tom Thorne, COMPUTER GRAPHICS, The University
of Edinburgh

• Elif Tosun, Computer Graphics, The University of
New York

• http://www.songho.ca/opengl/gl_projectionmatrix.
html

